3.3.27 \(\int \frac {x^2 (a+b \log (c x^n))}{(d+e x^2)^2} \, dx\) [227]

Optimal. Leaf size=164 \[ \frac {b n \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 \sqrt {d} e^{3/2}}-\frac {i b n \text {Li}_2\left (-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{4 \sqrt {d} e^{3/2}}+\frac {i b n \text {Li}_2\left (\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{4 \sqrt {d} e^{3/2}} \]

[Out]

-1/2*x*(a+b*ln(c*x^n))/e/(e*x^2+d)+1/2*b*n*arctan(x*e^(1/2)/d^(1/2))/e^(3/2)/d^(1/2)+1/2*arctan(x*e^(1/2)/d^(1
/2))*(a+b*ln(c*x^n))/e^(3/2)/d^(1/2)-1/4*I*b*n*polylog(2,-I*x*e^(1/2)/d^(1/2))/e^(3/2)/d^(1/2)+1/4*I*b*n*polyl
og(2,I*x*e^(1/2)/d^(1/2))/e^(3/2)/d^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {294, 211, 2393, 2360, 2361, 12, 4940, 2438} \begin {gather*} -\frac {i b n \text {PolyLog}\left (2,-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{4 \sqrt {d} e^{3/2}}+\frac {i b n \text {PolyLog}\left (2,\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{4 \sqrt {d} e^{3/2}}+\frac {\text {ArcTan}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 \sqrt {d} e^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {b n \text {ArcTan}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*Log[c*x^n]))/(d + e*x^2)^2,x]

[Out]

(b*n*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(2*Sqrt[d]*e^(3/2)) - (x*(a + b*Log[c*x^n]))/(2*e*(d + e*x^2)) + (ArcTan[(Sq
rt[e]*x)/Sqrt[d]]*(a + b*Log[c*x^n]))/(2*Sqrt[d]*e^(3/2)) - ((I/4)*b*n*PolyLog[2, ((-I)*Sqrt[e]*x)/Sqrt[d]])/(
Sqrt[d]*e^(3/2)) + ((I/4)*b*n*PolyLog[2, (I*Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*e^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 2360

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-x)*(d + e*x^2)^(q +
1)*((a + b*Log[c*x^n])/(2*d*(q + 1))), x] + (Dist[(2*q + 3)/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*(a + b*Log[
c*x^n]), x], x] + Dist[b*(n/(2*d*(q + 1))), Int[(d + e*x^2)^(q + 1), x], x]) /; FreeQ[{a, b, c, d, e, n}, x] &
& LtQ[q, -1]

Rule 2361

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{u = IntHide[1/(d + e*x^2),
 x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n}, x]

Rule 2393

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4940

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (Dist[I*(b/2), Int[Log[1 - I*c*x
]/x, x], x] - Dist[I*(b/2), Int[Log[1 + I*c*x]/x, x], x]) /; FreeQ[{a, b, c}, x]

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^2\right )^2} \, dx &=\int \left (-\frac {d \left (a+b \log \left (c x^n\right )\right )}{e \left (d+e x^2\right )^2}+\frac {a+b \log \left (c x^n\right )}{e \left (d+e x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx}{e}-\frac {d \int \frac {a+b \log \left (c x^n\right )}{\left (d+e x^2\right )^2} \, dx}{e}\\ &=-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} e^{3/2}}-\frac {\int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx}{2 e}+\frac {(b n) \int \frac {1}{d+e x^2} \, dx}{2 e}-\frac {(b n) \int \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \sqrt {e} x} \, dx}{e}\\ &=\frac {b n \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 \sqrt {d} e^{3/2}}-\frac {(b n) \int \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{\sqrt {d} e^{3/2}}+\frac {(b n) \int \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \sqrt {e} x} \, dx}{2 e}\\ &=\frac {b n \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 \sqrt {d} e^{3/2}}-\frac {(i b n) \int \frac {\log \left (1-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{2 \sqrt {d} e^{3/2}}+\frac {(i b n) \int \frac {\log \left (1+\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{2 \sqrt {d} e^{3/2}}+\frac {(b n) \int \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{2 \sqrt {d} e^{3/2}}\\ &=\frac {b n \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 \sqrt {d} e^{3/2}}-\frac {i b n \text {Li}_2\left (-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}+\frac {i b n \text {Li}_2\left (\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}+\frac {(i b n) \int \frac {\log \left (1-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{4 \sqrt {d} e^{3/2}}-\frac {(i b n) \int \frac {\log \left (1+\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{4 \sqrt {d} e^{3/2}}\\ &=\frac {b n \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} e^{3/2}}-\frac {x \left (a+b \log \left (c x^n\right )\right )}{2 e \left (d+e x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 \sqrt {d} e^{3/2}}-\frac {i b n \text {Li}_2\left (-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{4 \sqrt {d} e^{3/2}}+\frac {i b n \text {Li}_2\left (\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{4 \sqrt {d} e^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 258, normalized size = 1.57 \begin {gather*} \frac {\frac {a+b \log \left (c x^n\right )}{\sqrt {-d}-\sqrt {e} x}-\frac {a+b \log \left (c x^n\right )}{\sqrt {-d}+\sqrt {e} x}+\frac {b d n \left (\log (x)-\log \left (\sqrt {-d}-\sqrt {e} x\right )\right )}{(-d)^{3/2}}+\frac {b n \left (\log (x)-\log \left (\sqrt {-d}+\sqrt {e} x\right )\right )}{\sqrt {-d}}+\frac {d \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {\sqrt {e} x}{\sqrt {-d}}\right )}{(-d)^{3/2}}+\frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {d \sqrt {e} x}{(-d)^{3/2}}\right )}{\sqrt {-d}}+\frac {b n \text {Li}_2\left (\frac {\sqrt {e} x}{\sqrt {-d}}\right )}{\sqrt {-d}}+\frac {b d n \text {Li}_2\left (\frac {d \sqrt {e} x}{(-d)^{3/2}}\right )}{(-d)^{3/2}}}{4 e^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*Log[c*x^n]))/(d + e*x^2)^2,x]

[Out]

((a + b*Log[c*x^n])/(Sqrt[-d] - Sqrt[e]*x) - (a + b*Log[c*x^n])/(Sqrt[-d] + Sqrt[e]*x) + (b*d*n*(Log[x] - Log[
Sqrt[-d] - Sqrt[e]*x]))/(-d)^(3/2) + (b*n*(Log[x] - Log[Sqrt[-d] + Sqrt[e]*x]))/Sqrt[-d] + (d*(a + b*Log[c*x^n
])*Log[1 + (Sqrt[e]*x)/Sqrt[-d]])/(-d)^(3/2) + ((a + b*Log[c*x^n])*Log[1 + (d*Sqrt[e]*x)/(-d)^(3/2)])/Sqrt[-d]
 + (b*n*PolyLog[2, (Sqrt[e]*x)/Sqrt[-d]])/Sqrt[-d] + (b*d*n*PolyLog[2, (d*Sqrt[e]*x)/(-d)^(3/2)])/(-d)^(3/2))/
(4*e^(3/2))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.14, size = 752, normalized size = 4.59

method result size
risch \(-\frac {b x \ln \left (x^{n}\right )}{2 e \left (e \,x^{2}+d \right )}-\frac {b \arctan \left (\frac {x e}{\sqrt {e d}}\right ) n \ln \left (x \right )}{2 e \sqrt {e d}}+\frac {b \arctan \left (\frac {x e}{\sqrt {e d}}\right ) \ln \left (x^{n}\right )}{2 e \sqrt {e d}}+\frac {b n \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{2 e \sqrt {e d}}-\frac {b n \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-e d}}{\sqrt {-e d}}\right ) x^{2}}{4 \left (e \,x^{2}+d \right ) \sqrt {-e d}}+\frac {b n \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-e d}}{\sqrt {-e d}}\right ) x^{2}}{4 \left (e \,x^{2}+d \right ) \sqrt {-e d}}-\frac {b n d \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-e d}}{\sqrt {-e d}}\right )}{4 e \left (e \,x^{2}+d \right ) \sqrt {-e d}}+\frac {b n d \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-e d}}{\sqrt {-e d}}\right )}{4 e \left (e \,x^{2}+d \right ) \sqrt {-e d}}+\frac {b n \dilog \left (\frac {-e x +\sqrt {-e d}}{\sqrt {-e d}}\right )}{4 e \sqrt {-e d}}-\frac {b n \dilog \left (\frac {e x +\sqrt {-e d}}{\sqrt {-e d}}\right )}{4 e \sqrt {-e d}}+\frac {b n \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-e d}}{\sqrt {-e d}}\right )}{2 e \sqrt {-e d}}-\frac {b n \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-e d}}{\sqrt {-e d}}\right )}{2 e \sqrt {-e d}}+\frac {i b \pi \mathrm {csgn}\left (i c \,x^{n}\right )^{3} x}{4 e \left (e \,x^{2}+d \right )}-\frac {i b \pi \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} x}{4 e \left (e \,x^{2}+d \right )}-\frac {i b \pi \mathrm {csgn}\left (i c \,x^{n}\right )^{3} \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{4 e \sqrt {e d}}-\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} x}{4 e \left (e \,x^{2}+d \right )}+\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{4 e \sqrt {e d}}+\frac {i b \pi \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{4 e \sqrt {e d}}+\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right ) x}{4 e \left (e \,x^{2}+d \right )}-\frac {i b \pi \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right ) \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{4 e \sqrt {e d}}-\frac {b \ln \left (c \right ) x}{2 e \left (e \,x^{2}+d \right )}+\frac {b \ln \left (c \right ) \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{2 e \sqrt {e d}}-\frac {a x}{2 e \left (e \,x^{2}+d \right )}+\frac {a \arctan \left (\frac {x e}{\sqrt {e d}}\right )}{2 e \sqrt {e d}}\) \(752\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*ln(c*x^n))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*b/e*x/(e*x^2+d)*ln(x^n)-1/2*b/e/(e*d)^(1/2)*arctan(x*e/(e*d)^(1/2))*n*ln(x)+1/2*b/e/(e*d)^(1/2)*arctan(x*
e/(e*d)^(1/2))*ln(x^n)+1/2*b*n/e/(e*d)^(1/2)*arctan(x*e/(e*d)^(1/2))-1/4*b*n*ln(x)/(e*x^2+d)/(-e*d)^(1/2)*ln((
-e*x+(-e*d)^(1/2))/(-e*d)^(1/2))*x^2+1/4*b*n*ln(x)/(e*x^2+d)/(-e*d)^(1/2)*ln((e*x+(-e*d)^(1/2))/(-e*d)^(1/2))*
x^2-1/4*b*n*d/e*ln(x)/(e*x^2+d)/(-e*d)^(1/2)*ln((-e*x+(-e*d)^(1/2))/(-e*d)^(1/2))+1/4*b*n*d/e*ln(x)/(e*x^2+d)/
(-e*d)^(1/2)*ln((e*x+(-e*d)^(1/2))/(-e*d)^(1/2))+1/4*b*n/e/(-e*d)^(1/2)*dilog((-e*x+(-e*d)^(1/2))/(-e*d)^(1/2)
)-1/4*b*n/e/(-e*d)^(1/2)*dilog((e*x+(-e*d)^(1/2))/(-e*d)^(1/2))+1/2*b*n/e/(-e*d)^(1/2)*ln(x)*ln((-e*x+(-e*d)^(
1/2))/(-e*d)^(1/2))-1/2*b*n/e/(-e*d)^(1/2)*ln(x)*ln((e*x+(-e*d)^(1/2))/(-e*d)^(1/2))+1/4*I*b*Pi*csgn(I*c*x^n)^
3/e*x/(e*x^2+d)-1/4*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2/e*x/(e*x^2+d)-1/4*I*b*Pi*csgn(I*c*x^n)^3/e/(e*d)^(1/2)*
arctan(x*e/(e*d)^(1/2))-1/4*I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2/e*x/(e*x^2+d)+1/4*I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^
2/e/(e*d)^(1/2)*arctan(x*e/(e*d)^(1/2))+1/4*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2/e/(e*d)^(1/2)*arctan(x*e/(e*d)^
(1/2))+1/4*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)/e*x/(e*x^2+d)-1/4*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*
x^n)/e/(e*d)^(1/2)*arctan(x*e/(e*d)^(1/2))-1/2*b*ln(c)/e*x/(e*x^2+d)+1/2*b*ln(c)/e/(e*d)^(1/2)*arctan(x*e/(e*d
)^(1/2))-1/2*a/e*x/(e*x^2+d)+1/2*a/e/(e*d)^(1/2)*arctan(x*e/(e*d)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x^2+d)^2,x, algorithm="maxima")

[Out]

1/2*(arctan(x*e^(1/2)/sqrt(d))*e^(-3/2)/sqrt(d) - x/(x^2*e^2 + d*e))*a + b*integrate((x^2*log(c) + x^2*log(x^n
))/(x^4*e^2 + 2*d*x^2*e + d^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b*x^2*log(c*x^n) + a*x^2)/(x^4*e^2 + 2*d*x^2*e + d^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \left (a + b \log {\left (c x^{n} \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*ln(c*x**n))/(e*x**2+d)**2,x)

[Out]

Integral(x**2*(a + b*log(c*x**n))/(d + e*x**2)**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*log(c*x^n))/(e*x^2+d)^2,x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x^2/(x^2*e + d)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*log(c*x^n)))/(d + e*x^2)^2,x)

[Out]

int((x^2*(a + b*log(c*x^n)))/(d + e*x^2)^2, x)

________________________________________________________________________________________